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Abstract

In this paper we propose and analyze two algorithms to monitor an environmental boundary with
mobile sensors. The objective is to optimally approximate the boundary with a polygon. In the first
scenario the mobile sensors know the boundary and the approximating polygon is defined by the sensors
positions. In the second scenario the mobile sensors rely only on sensed local information to position
some interpolation points and define an approximating polygon. For both scenarios we design algorithms
that distribute the vertices of the approximating polygon uniformly along the boundary. The notion of
uniform placement relies on a metric inspired by known results on approximation of convex bodies. The
first algorithm is proved to converge in the case of static boundaries whereas the second one is provably
convergent also for slowly-moving boundaries because of certain input-to-state stability properties.

1 Introduction

In recent papers much attention has been given to the problem of boundary estimation and boundary tracking
by means of robotic networks. In particular the common goal is to design an algorithm that allows a limited
number of mobile sensors to detect the boundary of a region of interest and estimate it as it evolves. The
reason of so much attention lies in the numerous applications that boundary estimation and tracking can be
used for. Detection of harmful algae bloom [1, 2], oil spill [3], and fire boundary estimation [4, 5] are just some
examples. In [1], Bertozzi et al. adopt the so called “snake algorithm” from the computer vision literature to
detect and track the boundary of harmful algae bloom. The agents are equipped with a chemical sensor that is
able to measure concentration gradient and with a communication system that is able to exchange information
with a data fusion center. In [2], Kemp et al. suggest an algorithm that requires only a concentration sensor:
the agents repeatedly cross the boundary using a bang-bang angular velocity controller. In [3] the authors
use a random coverage controller, a collision avoidance controller and a bang-bang angular velocity controller
to detect and surround an oil spill. In [4, 5] Casbeer et al. describe an algorithm that allows LASE (Low
Altitude Short Endurance) Unmanned Vehicles to closely monitor the boundary of a fire. The LASEs have
an infrared camera and a short range communication device to exchange information with other agents and
to download the information collected onto the base station. The algorithm presented will uniformly space
the LASEs along the boundary of the fire so that eventually they will patrol an equal portion of the perimeter
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of the fire. A different approach is considered by Zhang and Leonard in [6]. A formation of four robots tracks
at unitary speed the level sets of a field. Their relative position changes so that they optimally measure the
gradient and estimate the curvature of the field in the center of the formation. The center of the formation
moves along the level sets.

In this paper we propose two algorithms to estimate and reconstruct the boundary of a region. In the first
idealized scenario we assume that the agents have knowledge of the boundary and that they are equipped
with GPS and communication devices.

In the second scenario, we require a group of Unmanned Air Vehicles (UAVs) to optimally place some
interpolation points on the boundary of a region of interest. The boundary can then be reconstructed by
linear interpolation of the interpolation points. We assume that (i) the UAVs do not have a priori knowledge
of the boundary, (ii) they are equipped with a camera sensor and with algorithms to estimate the tangent
and curvature of the boundary, and (iii) a wireless communication network provides the UAVs with the
ability to download and upload the interpolation points from and to a data center. The algorithm is provably
convergent also in the case of slowly-moving boundaries because of certain input-to-state stability properties.

The novelty of this paper is in the criterion used to optimally place robots and interpolation points in the
first and second scenario in such a way that they are uniformly distributed according to a curvature-weighted
distance function defined along the boundary. The curvature-weighted distance function was inspired by the
literature on optimal approximation of convex bodies by polygons e.g., see the survey [7, 8].

The convergence of both algorithms is proven using tools from the theory of consensus algorithms. An
incomplete list of relevant literature references includes [9], [10], and [11]. In [10], Blondel et al. propose an
extension to Wolfowitz Lemma used in Jadbabaie et al. [9]. The authors prove that an infinite product of
stochastic matrices (belonging to an infinite set, and with diagonal terms uniformly lower-bounded by a pos-
itive constant) converges to a rank-one matrix (despite bounded communication delays) if the corresponding
graphs are jointly strictly connected. In [11], Moreau uses set-valued Lyapunov functions and gives necessary
and sufficient conditions to reach consensus in both directed and undirected graphs. It is required that a
node is connected to all other nodes (less restrictive condition than the one in [10]) across some bounded or
possibly unbounded interval (respectively for undirected and directed graphs), and that the dynamic mapping
is strictly convex.

The paper is organized as follows. In Section 2 we review some mathematical literature on approximation
theory and convex optimization. In Section 3 we introduce the curvature-weighted deployment algorithm
for the case of known boundaries. In Section 4 we introduce an algorithm to jointly update an environment
boundary and deploy the UAVs uniformly along the boundary estimate. In Section 5 we present our final
concluding remarks.

2 Preliminaries

In this section we review some known useful results from approximation and matrix theory.

2.1 Approximation of convex and non-convex curves

A lot of work has been done to characterize the best polygon approximating a strictly convex body, e.g.,
see the extensive surveys [7, 8]. In the standard literature on convex bodies approximations, the symmetric
difference δS between two compact, and strictly convex bodies C, B ∈ R

d is defined by

δS(C,B) = µ(C ∪ B) − µ(C ∩ B),

where µ is the Lebesque measure on R
d. If Q is the body to be approximated by an inscribed n-vertices

polygon Pn, then δS(Q,Pn) = µ(Q) − µ(Pn). For n sufficiently large, McLure and Vitale [12] show that

δS(Q,P ∗
n) ≈

1

12n2

(∫ 2π

0

ρ(θ)2/3dθ

)3

=
1

12n2

(∫

∂Q

κ(`)1/3d`

)3

,
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where P ∗
n is the best approximating polygon with n vertices inscribed in Q, ∂Q is the boundary of Q, ρ and

κ = ρ−1 are the curvature radius and curvature of the boundary, respectively, ` is the arc length along ∂Q,
and θ is the angular position in a polar variable parametrization of ∂Q. It is not an easy task to construct the
best approximating polygon P ∗

n for a strictly convex body, but McLure and Vitale in [12] suggest the method
of empirical distributions. According to this method, the positions θi, i ∈ {1, . . . , n}, of the n vertices along

∂Q have the property that DS(i) =
∫ θi+1

θi
ρ(θ)2/3dθ has the same value for every consecutive pair of vertices

(i, i + 1). Interpolating polygons computed according to the method of empirical distributions converge to
P ∗

n as n → +∞.
For smooth non convex bodies with a small number of saddle points, the method of empirical distributions

will also yield a nearly optimal distribution as n → +∞ because of the local convexity of the body. We show
how to do this in what follows. Since the curvature radius ρ may be unbounded at some point of a non-
convex boundary, the integral DS(i) may be unbounded for some i. We avoid this problem by considering
the following general notion of distance along a boundary. For λ ∈ [0, 1], we define the pseudo-distance Dλ

between vertices (i, i + 1) by:

Dλ(i) = λ

∫ `i+1

`i

κ(`)1/3d` + (1 − λ)(`i+1 − `i).

This definition is inspired by the fact that, for convex bodies, we have
∫ 2π

0
ρ(θ)α =

∫
∂Q

κ(`)1−αd`, see [7].

Introducing the convex combination with arc length, we guarantee that Dλ(i) is non-zero whenever the
vertices i and i + 1 do not coincide. In what follows we shall apply a version of the method of empirical
distributions in which the positions of any two consecutive vertices of the interpolating polygon are uniformly
distributed according to the pseudo-distance Dλ.

We conclude this section by remarking that a metric similar to Dλ is used by Chen et al. in [13, 14].
In this paper, interpolation problems are motivated by certain diffusion phenomena in singularly perturbed
systems. The authors show that quasi-optimal interpolation errors in the L∞ or L1 norm are achieved when
the grid is uniform in the

∫
κ1/2d` or

∫
κ1/3d` metric, respectively.

2.2 Metzler matrices

We begin by introducing some definitions and notations taken from Chapter 5 in [15]. For A ∈ R
n×m,

we let A � (�)0 denote that the elements of A are positive (resp. non-negative). For A ∈ R
n×n, we let

A > (resp. ≥)0 denote that the matrix A is positive definite (resp. positive semidefinite) and we let ρ(A) be
the spectral radius of A.

Definitions 1. (i) A square matrix is said to be of class Z if all of its off-diagonal elements are non-
positive.

(ii) A square matrix A of class Z is said to belong to class K if there exits a matrix C � 0 and a number
k > ρ(C) such that A = kI − C.

(iii) A square matrix A of class Z is said to belong to class Ko if there exists a matrix C � 0 and a number
k ≥ ρ(C) such that A = kI − C.

Matrices of class K and Ko are called M-matrices (Metzler matrices). Note that equivalent definitions of
matrices of class K and Ko are provided in [15]. We briefly recall that a matrix A is irreducible if and only
if its associated directed graph is strongly connected. The following theorem presents a few useful properties
of these matrices.

Theorem 1. (i) If A ∈ Z and if there exists x � 0 such that Ax � 0, then A ∈ Ko.

(ii) If A ∈ R
n×n belongs to the class Ko, is irreducible and singular, then there exists u � 0 such that

Au = 0. Moreover, rank(A) = n − 1.
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(iii) If A ∈ Ko, then every eigenvalue of A has nonnegative real part.

Theorem 1 is proved in Theorem 5.11, 5.8 and 5.3 in [15], respectively.
Next we present a novel application of these concepts. For α ∈]0, 1], let ki ∈ [α, 1] for all i ∈ {1, . . . , n},

and define the n × n square matrices

A(k1, . . . , kn) =





−k1 − k2 k2 0 . . . k1

k2 −k2 − k3 k3 . . . 0
...

. . .
...

k1 0 . . . kn −kn − k1




,

and B(k1, . . . , kn) =
(
In + A(k1, . . . , kn)

)2
− In. These matrices have the following useful properties.

Lemma 2. The matrices A(k1, . . . , kn) and B(k1, . . . , kn) have rank n − 1 and their eigenvalues have non-
positive real part.

Proof. Let M = −A(k1, . . . , kn) so that M ∈ Z. By Theorem 1(i) with x = 1, it can be seen that M ∈ Ko.
Moreover M is irreducible because represents a strongly connected graph, and singular because M1 = 0. We
can then apply Theorem 1(ii) which proves that the origin is an eigenvalue of M with multiplicity 1. With
Theorem 1(iii) finally it can be proved that M is positive semidefinite which implies that A(k1, . . . , kn) is
negative semidefinite. The same proof applies to B(k1, . . . , kn).

3 Interpolation with global information

In this first section we propose and analyze an algorithm that uniformly distributes the agents according to
the pseudo-distance introduced in the previous section. We assume that the agents have complete knowledge
of the contour of a body they have to approximate. The approximation set is obtained by linear interpolation
of the positions of the agents, hence it will be called interpolating polygon. We prove convergence when the
contour is time invariant.

3.1 Problem setup and notation

Let ‖v‖ denote the Euclidian norm of v ∈ R
n. If v is a scalar, then |v| denotes its absolute value. Let R+

be the set of non negative real numbers and N0 = N ∪ {0}. Let ∂Q be the boundary of a connected, and
possibly non-convex set Q in R

2. Let γ : [0, 1] → R
2 be a parametric representation of the boundary; we

assume that γ′(s) 6= 0 for all s ∈ [0, 1], that γ(0) = γ(1), and that s increases as we traverse the curve in the
counterclockwise direction. We define the curvature κ : [0, 1] → R̄+ of the curve γ by

κ(s) =
‖γ′(s) × γ′′(s)‖

‖γ′(s)‖3
.

Let p1, . . . , pn ∈ R
2 be the locations of n robots. Let πi ∈ ∂Q ⊂ R

2 be the point on the boundary closest
to the robot pi, i.e.,

πi = argminz∈∂Q ‖pi − z‖,

and let si ∈ [0, 1] satisfy γ(si) = πi (see Figure 1). The projection πi might not being unique for some ∂Q
and some positions pi. We choose πi randomly among all possible projections of pi. Let L : ∂Q × ∂Q → R̄+

be the arc length along the boundary ∂Q between two points measured in the counterclockwise direction
starting from the first argument, i.e.,

L(π1, π2) =

∫ s2

s1

‖γ′(s)‖ds,
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where πk = γ(sk), k ∈ {1, 2}. Given λ ∈ R
+, let Dλ : ∂Q × ∂Q → R̄+, be the pseudo-distance defined by:

Dλ(πi, πj) = λ

∫ sj

si

κ1/3(s)‖γ′(s)‖ds + (1 − λ)L(πi, πj),

where πk = γ(sk), k ∈ {i, j}. Occasionally on we will use the identifications L(si, sj) ≡ L(πi, πj), and
Dλ(si, sj) ≡ Dλ(πi, πj), where πk = γ(sk), k ∈ {i, j}.

Now, given n points {π1, . . . , πn} ∈ ∂Q we can construct the Voronoi partition of ∂Q based on the
pseudo-distance Dλ. For a point πi we define ui the position of its immediate counterclockwise neighbor as
follows: ui = γ(su

i ) = πj , where j = argminq∈{1,...,n} L(πi, πq). Analogously, we define `i as the position of

its immediate clockwise neighbor as follows. `i = γ(s`
i) = πj , where j = argminq∈{1,...,n} L(πq, πi).

We associate any agent with its Voronoi cell Vi = {γ(s) |s ∈ [m`
i ,m

u
i ]} where m`

i and mu
i are defined

implicitly as follows: Dλ(s`
i ,m

`
i) = Dλ(m`

i , si) and Dλ(si,m
u
i ) = Dλ(mu

i , su
i ). Furthermore, we let µu

i =
γ(mu

i ) and µ`
i = γ(m`

i). For any Voronoi cell we define its center Ci = γ(s∗i ), where s∗i is implicitly defined
by Dλ(m`

i , s
∗
i ) = Dλ(s∗i ,m

u
i ). Finally, we define the set of the neighbors of agent i according to a disk graph:

Ni = {j ∈ {1, . . . , n}| ‖pj − pi‖ ≤ r}. All the quantities just defined are illustrated in Figure 1.

L(`i, πi)

µu
i

πi
pk

ui
L(πi, ui)

po

Q

`i

µ`
i

πo

∂Q positive direction

pt

πt

pj
pi

Vi

Ci

Figure 1: In this figure pi, pj , pk, po, and pt and their projections, πi, `i, ui, πo, and πt onto the boundary
∂Q are illustrated. There are also indicated the midpoints µ`

i and µu
i , according to the pseudo-distance Dλ

between `i and πi, and between πi and ui. Vi is the Voronoi cell associated with agent i, and the Voronoi
center is Ci. L(`i, πi) and L(πi, ui) are the arc length of the portion of ∂Q between `i and πi, and between
πi and ui.

3.2 Curvature-weighted Deployment Algorithm

In this section we present and analyze an algorithm that will allow n robots to be equally distributed,
according to the pseudo-distance Dλ, along the boundary of Q. In other words, the objective is to distribute
the robots in such a way that their Voronoi cell has pseudo-length equal to

D∗
λ =

1

n

∫ 1

0

(
λκ1/3(s) + (1 − λ)

)
‖γ′(s)‖ds.

The algorithm is summarized in the following table.
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Name: Curvature-weighted Deployment Algorithm

Goal: Uniformly distribute the agents according to the pseudo-distance Dλ.
Data: Parametric representation of the boundary, γ.

Between two communication rounds, local agent i ∈ {1, . . . , n} performs:
1: Calculate its projection πi.
2: Acquire the projections πj for j ∈ Ni.
3: if Ni 6= ∅, then

4: determine its immediate counterclockwise and clockwise neighbors, i.e., set

`i := πj , where j := argminq∈Ni
L(πq, πi),

ui := πj , where j := argminq∈Ni
L(πi, πq),

and calculate the center of its Voronoi cell Ci,
5: else

6: Ci := πi.
7: end if

8: if pi 6∈ ∂Q, i.e., the agent is not on the boundary, and Ci 6= πi, then

9: first move towards πi then towards Ci, following the tangent to ∂Q at πi.
10: end if

11: if pi 6∈ ∂Q, i.e., the agent is not on the boundary, and Ci = πi, then

12: move towards πi.
13: end if

14: if pi ∈ ∂Q, then

15: move towards Ci sliding along the boundary ∂Q.
16: end if

Theorem 3. If the communication radius r is larger than the diameter of Q, then the Curvature-

weighted Deployment Algorithm guarantees that, for all i ∈ {1, . . . , n},

lim
t→+∞

Dλ(si, si+1) = lim
t→+∞

Dλ(s∗i , s
∗
i+1) = D∗

λ. (1)

Proof. The algorithm assures that the agents will reach the boundary at some point, so without loss of
generality we will assume that pi = πi ∈ ∂Q for all i ∈ {1, . . . , n}.

The first equality in equation (1) is true because the agents always move towards their Voronoi center so
we have to prove only the second equality. By hypothesis r is larger than the diameter of Q, this guarantees
that Ni = {1, . . . , n} \ {i} for all i ∈ {1, . . . , n}. Furthermore {`i, ui} are the correct neighbors of agent i for
all i ∈ {1, . . . , n} in the ring topology graph. Then, without loss of generality, we can relabel all the agents
so that they are in increasing order if we move along the boundary in the counterclockwise direction. Hence,
agents i + 1 and i− 1 are the clockwise and counterclockwise neighbors of agent i for all i ∈ {1, . . . , n}. This
means that πi+1 ≡ ui and πi−1 ≡ `i; we use the convention πn+1 = π1, and π0 = πn. Let µ`

i = γ(m`
i) be the

midpoint between the projections πi−1 and πi according to the pseudo-distance Dλ(πi−1, πi), then

Dλ(πi−1, µ
`
i) = Dλ(µ`

i , πi) =
1

2
Dλ(πi−1, πi). (2)

Analogously, let µu
i = γ(mu

i ) be the midpoint between the projections πi and πi+1 according to the pseudo-
distance Dλ(πi, πi+1), then

Dλ(πi, µ
u
i ) = Dλ(µu

i , πi+1) =
1

2
Dλ(πi, πi+1). (3)

By definition of Voronoi center Ci we have:

Dλ(µ`
i , Ci) = Dλ(Ci, µ

u
i ) =

Dλ(µ`
i , πi) + Dλ(πi, µ

u
i )

2
. (4)

6



Substituting (2) and (3) in (4):

Dλ(µ`
i , Ci) = Dλ(Ci, µ

u
i ) =

Dλ(πi−1, πi) + Dλ(πi, πi+1)

4
. (5)

The pseudo-distance between Ci and πi can be now calculated as follows:

Dλ(Ci, πi) = Dλ(µ`
i , πi) − Dλ(µ`

i , Ci), if Ci is encountered when going from µ`
i to πi, (6)

Dλ(πi, Ci) = Dλ(πi, µ
u
i ) − Dλ(Ci, µ

u
i ), if Ci is encountered when going from πi to µu

i . (7)

Equations (6) and (7) refer to the two different situations described in Figure 2.

πi−1

πi
πi+1

µ`
i

µu
i

positive direction

πi−1

πi+1

µu
i

µ`
i

positive direction

Ci

Ci

π+
i

πi
π+

i

Figure 2: The center Ci of the Voronoi cell, associated with agent i, can be to the left (upper arc) or to the
right (lower arc) of the projection πi of the point pi.

Recalling (2), (3), and (5), (6) and (7) become:

Dλ(Ci, πi) =
Dλ(πi−1, πi) − Dλ(πi, πi+1)

4
, if Ci is encountered when going from µ`

i to πi, (8)

Dλ(πi, Ci) =
−Dλ(πi−1, πi) + Dλ(πi, πi+1)

4
, if Ci is encountered when going from πi to µu

i . (9)

According to the algorithm, agent i slides along the boundary with constant velocity towards Ci and it
reaches the position π+

i . The pseudo-distance Dλ between the position of agent i between two communication
rounds can be expressed as follows:

Dλ(π+
i , πi) = ki

Dλ(πi−1, πi) − Dλ(πi, πi+1)

4
, if Ci is encountered when going from µ`

i to πi, (10)

Dλ(πi, π
+
i ) = ki

−Dλ(πi−1, πi) + Dλ(πi, πi+1)

4
, if Ci is encountered when going from πi to µu

i , (11)

where α ≤ ki ≤ 1, with α being the uniform lowerbound on kis only after the agents reach the boundary.
In the same way we can calculate Dλ(π+

i−1, πi−1) or Dλ(πi−1, π
+
i−1) according to the relative position

between π+
i−1 and πi−1:

Dλ(π+
i−1, πi−1) = ki−1

Dλ(πi−2, πi−1) − Dλ(πi−1, πi)

4
, (12)
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Dλ(πi−1, π
+
i−1) = ki−1

−Dλ(πi−2, πi−1) + Dλ(πi−1, πi)

4
. (13)

We can now express the new pseudo-distance between π+
i−1 and π+

i as a function of Dλ(πi−1, πi). As shown

in Figure 3, there four possible cases to take into account. For each of them Dλ(π+
i−1, π

+
i ) is expressed as

follows:

Dλ(π+
i−1, π

+
i ) =






Dλ(πi−1, πi) + Dλ(πi, π
+
i ) − Dλ(πi−1, π

+
i−1), case I ,

Dλ(πi−1, πi) − Dλ(π+
i , πi) + Dλ(π+

i−1, πi−1), case II ,

Dλ(πi−1, πi) + Dλ(πi, π
+
i ) + Dλ(π+

i−1, πi−1), case III ,

Dλ(πi−1, πi) − Dλ(π+
i , πi) − Dλ(πi−1, π

+
i−1), case IV .

(14)

πi−1

πi−1

πi−1

πi−1

πi

πi

πi

πi

π+
i−1

π+
i−1

π+
i−1

π+
i−1

π+
i

π+
i

π+
i

case I

case II

case III

case IV

π+
i

Figure 3: In this figure the four possible relative positions between π+, πi, π+
i−1, and πi−1 are shown.

Substituting (10), (11), (12), and (13) in (14):

Dλ(π+
i−1, π

+
i ) =

ki−1

4
Dλ(πi−2, πi−1) + (1 −

ki−1

4
−

ki

4
)Dλ(πi−1, πi) +

ki

4
Dλ(πi, πi+1), (15)

for all the four cases. If we now call D the column vector obtained by stacking up the pseudo-distances
Dλ(πi−1, πi) for all i ∈ {1, . . . , n}, and D+ its update, then:

D+ = (In + A(k1/4, . . . , kn/4))D, (16)

where A(k1/4, . . . , kn/4) was defined in Section 2.
We need to be able to express α, lower bound of kis, in order to apply the results of [11]. Since the

vectors γ′(s), and κ(s) are defined on a compact set, their modulus has a maximum and a minimum value.
Let ‖γ′

max‖, ‖γ
′
min‖, ‖κmax‖, and ‖κmin‖ be the maximum and minimum values of the norm of γ′(s) and κ(s).

Let us suppose now that agent i has to slide along the boundary ∂Q from the position πi to position π+
i at

speed v in the sampling time ∆t > 0, then:

v =
L(πi, π

+
i )

∆t
=

∫ s+

i

si
‖γ′‖ds

∆t
=⇒ v ≤

‖γ′
max‖(s

+
i − si)

∆t
=⇒ (s+

i − si) ≥
v∆t

‖γ′
max‖

. (17)

We can lower bound and upper bound the quantity Dλ(πi, π
+
i ) recalling (11):

ki

4
Dλ(∂Q) ≥ Dλ(πi, π

+
i ) =

∫ s+

i

si

λκ
1
3 ‖γ′‖ + (1 − λ)‖γ′‖ds ≥

[
λκ

1
3

min‖γ
′
min‖ + (1 − λ)‖γ′

min‖
]
(s+

i − si).

8



We can write:

ki

4
Dλ(∂Q) ≥

[
λ‖κmin‖

1
3 + (1 − λ)

]
‖γ′

min‖(s
+
i − si) ≥

[
λ‖κmin‖

1
3 + (1 − λ)

]
‖γ′

min‖

(
v∆t

‖γ′
max‖

)
.

The lowerbound on ki can be evaluated as follows:

ki ≥ 4
λ‖κmin‖

1
3 + (1 − λ)

Dλ(∂Q)

‖γ′
min‖

‖γ′
max‖

v∆t = α.

Given the boundary ∂Q, the speed, and the sampling time, α can be calculated. If the speed v is very large
then α could be larger than 1. This means that any agent can move in a sampling interval from a point on
the boundary to any other point, then the lowerbound on ki is, as the upperbound, equal to 1.

We can now use Theorem 3 of [11] and the fact that the dynamic matrix A(k1, . . . , kn) in equation (16)
is doubly stochastic to complete the proof.

Remark 4. Instead of relying on the results in [11], we sketch here an alternative proof given by a direct
Lyapunov argument. If V (D) = (D − D∗

λ1)T (D − D∗
λ1), then

V (D+) − V (D) = (D+)T (D+) − DT D = DT B(k1/4, . . . , kn/4)D ≤ 0,

where B(k1/4, . . . , kn/4) is defined in Section 2. Recall that 1T D = 1D+ = Dλ(∂Q) and that the dynamics
matrices are symmetric. It can be proved (see Lemma 2) that all the eigenvalues of B(k1/4, . . . , kn/4) have
strictly negative real part, except for one placed at the origin. The eigenvector associated with the eigenvalue
0 is the vector 1. Using the LaSalle Invariance Principle we conclude that consensus is reached.

Conjecture 1. We conjecture that Curvature-weighted Deployment Algorithm achieves consensus
even if r is smaller than the diameter of Q but larger than r∗, where r∗ is defined by:

r∗ = max
e,f∈[0,1]

D(e,f)=D∗

∫ f

e

‖γ′(s)‖ds.

The lowerbound r∗ guarantees that, if consensus is reached, each agent can communicate with its immediate
clockwise and counterclockwise neighbors (according to the ring graph, i.e., the neighbors along the boundary).
However, before consensus is reached, a possible situation, illustrated in Figure 4, is one in which some agents
cannot communicate with their immediate neighbors and some agents are isolated. Each non isolated agent
will move in such a way that the pseudo-distance between itself and its clockwise neighbor, and between itself
and its counterclockwise neighbor have the same value. As a consequence, the pseudo-distance between an
agents and those that it recognizes as its neighbors will grow and potentially will be larger than D∗

λ. In doing
so it might get to see its correct neighbors or it might get isolated because, at a certain point, the euclidian
distance between itself and its last neighbors is larger than r∗. Since the boundary ∂Q is a closed set, not every
agent can be isolated and there will always be some agent that can detect other agents and move accordingly.
It is our conjecture that, eventually, every agent will determine its correct immediate neighbors according to
the ring topology graph, and hence consensus will be reached.

3.3 Simulations

In this section we present the implementation results of the Curvature-weighted Deployment Algo-

rithm when ∂Q is time-invariant and described by, for θ ∈ [0, 1),

γ(θ) =
(
2 + cos(10πθ) + 0.5 sin(4πθ)

)[
cos(2πθ)
sin(2πθ)

]
. (18)
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r

Figure 4: In this figure four agents are on a portion of the boundary ∂Q. The radius of communication is
r. One agent is isolated, while the other three have at least a neighbor according to the disk graph. With
knowledge about their neighbors in the disk graph, the agents are not able to correctly identify their neighbors
along the boundary.

In Figure 5 five different frames of the simulation are collected. The frames show for t = 0, t = 0.25, t = 1,
t = 5, and t = 25 the positions of agents and the boundary ∂Q. The value of λ is 10

11 . The sampling time is
t = 0.05 seconds while the radius of the communication disk is r = 3.

In Figure 6 it is shown the error maxi∈{1,...,n} Dλ(pi, pi+1) − mini∈{1,...,n} Dλ(pi, pi+1) in the consensus
on Dλ reached by the agents. The difference should vanish but it does not because of numerical errors. For
example, because the Voronoi center is defined implicitly, the agents need to estimate it using the bisection
method and this, of course, introduces addtional error in the evaluation of Voronoi cell and Voronoi center.

4 Interpolation with local information

The Curvature-weighted Deployment Algorithm was developed under the assumption that all the
agents have complete knowledge of the boundary ∂Q. Here we consider a more generic and realistic scenario
in which every sensing agent has only local knowledge of the boundary to be reconstructed. We suppose that
the sensing agents can locally estimate the tangent and the curvature of ∂Q. For the case of UAVs surveilling
a visible boundary, this information could be provided by a camera and an edge detection algorithm. Another
possibility is to substitute every agent with a formation of chemical sensors. In the recent work [6] the authors
propose an optimal formation of four agents to estimate the gradient and the curvature of a given level set
in a field. We assume that an initial estimate of the boundary is available so that the interpolation points

can be distributed (possibly non uniformly) on the boundary and the pseudo-distance D̂λ between any two
neighbors is known. We assume also that every agent is equipped with wireless communication devices to
communicate with a data fusion center.

To interpolate the unknown slowly time-varying boundary ∂Q, we introduce a counterclockwise ordered
set of interpolation points {p1, . . . , pnip

}. These are virtual positions stored in a data fusion center together
with the tangent of ∂Q at all interpolation points, and the pseudo-distance between any interpolation point
and its counterclockwise neighbor. The agents have two objectives: (i) update the interpolation points such

that they are uniformly distributed along ∂Q according to the estimated pseudo-distance D̂λ, (ii) be equally
distributed along the boundary according to arc length distance.

To achieve these objectives we propose a novel Estimate Update and Pursuit Algorithm

10
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Figure 5: This figure shows five different instants of 25 seconds simulation obtained by implementing the Curvature-

weighted Deployment Algorithm with n = 30, λ = 10

11
, r = 3.
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Figure 6: Curvature-weighted Deployment Algorithm. The plot shows the error maxi∈{1,...,nip} Dλ(pi, pi+1)−
mini∈{1,...,nip} Dλ(pi, pi+1) vs time.

that can be summarized as follows. After reaching a point on ∂Q, the sensing agents move along
∂Q to collect the following data: (i) points belonging to ∂Q, and (ii) tangent and curvature of
∂Q at those points. Using these measurements and communicating with the data center, they
complete the following three steps. In the first step, they determine which interpolation point pi

they are closer to and then project it onto the measured boundary. In the second step, they adjust
pi−1 so that it is at the center of its Voronoi cell along ∂Q. In the third step, they estimate the arc
length of distance between them and their immediate clockwise and counterclockwise neighbors
and use this information to speed up or slow down. The first two steps have the combined effect
of updating the local estimates of the boundary. Thanks to the third step, the agents distribute
themselves uniformly along the boundary.

In what follows we present the Estimate Update and Pursuit Algorithm in some detail and we
analyze its stability.

4.1 Problem setup and notation

Let γ : R+ × [0, 1] → R
2 be a parametric representation of the time-varying boundary so that, at fixed

t ∈ R+ and for all s ∈ [0, 1], γ(t, s) describes the boundary at time t. We assume that ∂γ(t,s)
∂s = γ′(t, s) 6= 0

for all s ∈ [0, 1] and for all t, that γ(t, 0) = γ(t, 1), and that s increases as we traverse the curve in the
counterclockwise direction. We also assume that γ(t, s) is smooth with respect to s and t and that the length
of the boundary ∂Q is upperbounded and lowerbounded uniformly in t.

Let p1, . . . , pnip
∈ R

2 be the locations of nip ordered interpolation points. Let Pi(t), with i ∈ {1, . . . , na}
and nip � 3na, be the positions of the sensing agents at a given time. Both the interpolation points and
the sensing agents are ordered counterclockwise. We assume that the sensing agents move counterclockwise
along the boundary, with speed vi.

We assume that each agent maintains some variables in its memory that are described as follows. The
state of the sensing agent i is:

{now
i, lastarc

i,bufferarc
i,nextbuffer

i},

where the first variable is a counter, and the other three are a discrete representation of the subset of ∂Q
the sensing agent is flying over. For simplicity we will omit the upperscript and lowerscript i and we will
introduce them when necessary.

12



Let now ∈ {1, . . . , nip} be the next point to be projected onto ∂Q. Let O = lastarc ∪ bufferarc ∪
nextbuffer ⊂ ∂Q be the set of observations collected by the sensing agent up to time t while going from
pnow−2 towards pnow along ∂Q defined as follows:

lastarc = {o1, . . . , oL},

bufferarc = {oL+1, . . . , oL+M},

nextbuffer = {oL+M+1, . . . , oL+M+T },

(19)

where L,M ∈ N, T ∈ N0, o1 = pnow−2, oL = pnow−1, and oL+M+T = P (t). The following figure illustrates
these notation and quantities. The solid line represents ∂Q as seen by the agent i, while the dashed line
represents ∂Q as seen by the agent i − 1. The sensing agent is represented by a triangle. The white circles
represent the interpolation points before the agent updates them, whereas the black circles represent the
interpolation points after the agent has updated them. The square represents the last point belonging to
bufferarc. The first and the last point of the three data structures lastarc, bufferarc, and nextbuffer

are shown, the others are omitted for clarity.

pnow−2 = o1

lastarc

pnow−1 = oL

pnow

pnow+1

Pi = oL+M+T

oL+M

bufferarc nextbuffer

current agent

previous agent

Before defining the point oL+M and the index M we introduce the set of estimated tangent vectors to

∂Q, γ̂′ : O → R
2, and the set of estimated curvature of ∂Q, κ̂ : O → R̄+. In other words, γ̂′(oj) and

κ̂(oj) are estimated tangent vector and curvature at the point oj , for j ∈ {1, . . . , L + M + T}. We can

now define D̂λ : O × O → R̄+ as the discretized pseudo-distance between two observations oj and oh, with
h, j ∈ {1, . . . , L + M + T}, and h > j. We shall characterize implicitly the observation oL+M as follows

D̂λ(oL+1, oL+M ) = 2D̂−
λ (pnow−1, pnow),

where D̂−
λ (pnow−1, pnow) is the estimated pseudo-distance between pnow−1 and pnow when an agent updated

for the last time pnow. This information is assumed to be stored in the data center.
The sets lastarc, and bufferarc will be used by the sensing agents to define the projection onto

∂Q of pnow and the Voronoi center Ĉnow−1 of the interpolation point pnow−1. We recall that the positions
o1, . . . , oL+M+T are points on the plane that the sensing agent has visited in previous instants while moving
along the boundary ∂Q, i.e., oj = P (τ) for some τ < t and for all j ∈ {1, . . . , L + M + T}. We can say that
the points o1, . . . , oL+M+T are a fine discretization of the portion of ∂Q from pnow−2 to the current position
of the sensing agent P , while the indices pnow−2, pnow−1, and pnow are a coarser discretization of the same
arc.

To calculate the Voronoi cell V̂now−1 along ∂Q of the interpolation point pnow−1, we first need to project
pnow on ∂Q. Let oj̄ be the projection of pnow, defined by:

p+
now := oj̄ = argminoj∈bufferarc ‖(oj − pnow) · t−now‖,

where t−now =
bγ′(pnow)

‖ bγ′(pnow)‖
is the unit-length tangent vector at ∂Q(t−) at the interpolation point pnow last time

the interpolation point was updated. In other words the projection of pnow at time t+ on ∂Q(t+) is the
intersection of ∂Q(t+) with the normal vector to ∂Q(t−) at pnow at time t−. This projection is univocally
defined and has the following properties. If ∂Q is time-invariant then p−now = p+

now, if ∂Q is slowly time-varying
then p+

now is close to the orthogonal projection of p−now onto ∂Q(t+). We can now define the set nowarc

13



and update bufferarc as follows: nowarc = {oL+1, . . . , oj̄}, bufferarc = bufferarc \ {oL+1, . . . , oj̄}.
In the following figure, the agent (i) projects the interpolation point pnow onto ∂Q(t), (ii) update the state
variable bufferarc and generate the variable nowarc.

lastarc nowarc

p+
now = oj̄

pnow+1
pnow−2 = o1

bufferarc

nextbuffer

pnow−1 = oL

t−nowpnow

Using the collected data, the sensing agents can numerically evaluate the pseudo-distances D̂λ(pnow−2, pnow−1)

and D̂λ(pnow−1, pnow) between pnow−2 and pnow−1, and between pnow−1 and pnow. Recall that pnow−2 = o1,

pnow−1 = oL. Let then V̂now−1 = {o`, . . . , ou}, where o` ∈ lastarc and ou ∈ nowarc are implicitly defined
by:

D̂λ(o1, o`) = D̂λ(o`, oL) =
D̂λ(o1, oL)

2
,

D̂λ(oL, ou) = D̂λ(ou, oj̄) =
D̂λ(oL, oj̄)

2
.

The point o` is the midpoint between pnow−2 and pnow−1, while ou is the midpoint between pnow−1 and

pnow after the latter was projected on ∂Q. We can now implicitly define the Voronoi center Ĉnow−1 := ok̄ ∈
lastarc ∪ nowarc by

D̂λ(o`, ok̄) = D̂λ(ok̄, ou) =
D̂λ(o1, oL) + D̂λ(oL, oj̄)

4
.

In the following figure, the agent (i) calculates the Voronoi cell V̂now−1, and (ii) updates the interpolation
point pnow−1 to lie optimally between pnow−2 and pnow.

lastarc nowarc

pnow+1
pnow−2 = o1

bufferarc

nextbuffer

p+
now

o`

ou

p+
now−1 = ok̄

t−now

pnow−1

Remark 5. In practical settings, the sensing agent might not be able to find o`, ou, and Ĉnow−1 that exactly
satisfy the equalities above, due to the fact that the sensing agent knows only a discretization of ∂Q through
the observations lastarc, nowarc, and bufferarc. To handle the discretization, one can redefine o`, ou,

and Ĉnow−1 by:

o` = argminoi∈lastarc D̂λ(o1, oi) −
D̂λ(o1, oL)

2
,

ou = argminoi∈nowarc D̂λ(oi, oL) −
D̂λ(oL, oj̄)

2
,

Ĉnow−1 = ok̄ = argminoi∈{o`,...,ou} D̂λ(o`, oi) −

(
D̂λ(oL, oj̄) + D̂λ(o1, oL)

4

)
.
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The sensing agent can now update once more the state variables as follows: now+ = now+1, lastarc+ =
{ok̄, . . . , oj̄}, bufferarc+ = {oj̄+1, . . . , oq}, and nextbuffer+ = {oq+1, . . . , oL+M+T }, where oq ∈ bufferarc∪

nextbuffer is implicitly defined by: D̂λ(oj̄+1, oq) = 2D̂−
λ (pnow+−1, pnow+), if D̂λ(oj̄+1, oL+M+T ) < 2D̂−

λ (pnow+−1, pnow+)
then bufferarc+ = bufferarc ∪ nextbuffer and nextbuffer+ = ∅. The following figure shows the
state variables update as just described, in the case that nextbuffer = ∅.

pnow−2 = o1

pnow−1 = oL
pnow

lastarc bufferarc

This completes our description of the estimate update algorithm and we now focus on the pursuit objective.
To uniformly distribute the sensing agents along the boundary ∂Q according to arc length, we will use the
following update law for their velocities:

vi(t) = v0 + k(L̂(Pi, Pi+1) − L̂(Pi−1, Pi)),

with k, v0 > 0 and L̂(Pn, Pm) =
∑now

m

j=nown+1(‖pj−1 − pj‖), for all n,m ∈ {1, . . . , na}. Here, recall that

pnown , pnown+1 , . . . , pnowm are the interpolation points separating agent n and agent m, with n < m. L̂ is
the estimated arc length of the portion of ∂Q that has to be traversed to go from the sensing agent n to the
sensing agent m. The sensing agents have only local information of ∂Q but still they have to estimate the
distance, along ∂Q, from their clockwise and counterclockwise neighbors in order to calculate their speed.

The estimate L̂(Pn, Pm) is obtained by the approximating polygon formed by the interpolation points. In
practice any agent will speed up if it is closer to the agent behind it, and slow down if closer to the agent in
front of it. With a saturation-like function: sat(vi(t)) = max{vmin,min{vi(t), vmax}}, we will impose though
that 0 < vmin ≤ vi(t) ≤ vmax for all t.

4.2 Estimate Update and Pursuit Algorithm

In this section we present an algorithm that allows na sensing agents to equally distribute the nip interpolation

points along ∂Q, according to the pseudo-distance D̂λ. Also the algorithm uniformly distributes the na sensing
agents along ∂Q, according to the arc length. The algorithm is summarized in the following table.

Some steps of the algorithm are affected by noise and error: i) γ̂′ and κ̂ are only estimate of the true

values, ii) L̂ is an approximation of L, iii) the sets lastarc, bufferarc, and nextbuffer are discretization
of the subset of ∂Q that agent i is visiting, therefor, the center of the Voronoi cell of the interpolation point

pnowi−1 might not be calculated exactly. Let D̂(t) and L(t) be the column vectors:

D̂(t) =
[
D̂λ(p1(t), p2(t)), . . . , D̂λ(pnip−1(t), pnip

(t)), D̂λ(pnip
(t), p1(t))

]T
,

L(t) =
[
L(P1(t), P2(t)), . . . , L(Pna−1(t), Pna

(t)), L(Pna
(t), P1(t))

]T
.

Consider now the disagreement vectors d(k) and δL(t) defined as follows:

d(k) = D̂λ(k) −
1T D̂λ(k)

nip
1, (20)

δL(t) = L(t) −
1T L(t)

na
1, (21)
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note that they are orthogonal to the vector 1.
It will be proved that the dynamics of d and δL is input-to-state stable (ISS) where the inputs are the

errors and noises above discussed. Because of the ISS property we can conclude that as long as the errors are
small, the states Dλ(pi, pi+1) and L(Pi, Pi+1) will be close to the equilibrium of the unperturbed system, i.e.,
Dλ(pi, pi+1) = Dλ(pi+1, pi+2) for all i ∈ {1, . . . , nip} and L(Pi, Pi+1) = L(Pi+1, Pi+2) for all i ∈ {1, . . . , na}.

Lemma 6. Let γ : [t0,+∞) × [0, 1] → R
2 describe the boundary ∂Q along time, and let ∂B(p, ε) be the

boundary of the ball centered in p and with radius ε. If γ(t, s) is a smooth function of both its arguments,
then ∀ε > 0 ∃T > t0 such that ∀p ∈ ∂Q(t0) the set defined by ∂B(p, ε) ∩ ∂Q(t), t0 < t < T , has only two
elements.

Lemma 6 implies that if we allow small enough changes in ∂Q, then the projection of any interpolation
point pi onto ∂Q(t), as defined in the previous section, is unique.

To avoid abuse of notation, let Dλ(pi, pi+1, t) be the pseudo-distance along ∂Q(t) between the instan-
taneous projection of two interpolation points onto ∂Q(t). Let t0 be the last instant of time in which the

sensing agent measured D̂λ(pi, pi+1). Then the error |Dλ(pi, pi+1, t) − D̂λ(pi, pi+1, t0)| is bounded and the
result is stated as follows.

Lemma 7. Let γ : [t0, T ] × [0, 1] → R
2 describe the boundary ∂Q along time. If γ(t, s) is a smooth function

of both its arguments, then for t > t0, Dλ(pi, pi+1, t) = D̂λ(pi, pi+1, t0) + g(t − t0) for all i ∈ {1, . . . , nip},
where g(t) is continuous and g(0) = 0. The quantity Dλ(pi, pi+1, t) denotes the pseudo-distance between two
consecutive interpolation points at time t given that they were projected onto ∂Q(t) from their positions at

time t0. The number t − t0 is bounded from above by ∆t = maxt∈R+

L(∂Q(t))
v , where v is the speed of the

agent.

Lemma 7 is due to the fact the the pseudo-distance D̂λ is the composition of smooth functions and only
continuous functions in t, so it is continuous in t. Therefor, if the boundary changes slowly, then the corrective

term g(t − t0) is just like a noise. If we can prove that D̂λ(pi, pi+1, t) gets close to the target value, we will
prove that also Dλ(pi, pi+1, t) will get close to the target vector due to Lemma 7.

Theorem 8. The evolution of the disagreement vectors defined by (20) and by (21) under the Estimate

Update and Pursuit Algorithm is input-to-state stable with respect to estimation noise and deformation
of the boundary ∂Q(t).

Proof. We first prove the ISS property for the dynamics of d(k).

Let us suppose that ∂Q(t) is time-invariant, that no error affects the calculation of Ĉnow−1, the center of
the Voronoi cell of the interpolation point pnow−1 (i.e., the buffers used by the agents are continuous and not
discrete). Suppose that a sensing agent has passed by the point pnow, and then it can optimally place pnow−1.

As a consequence, the pseudo-distances D̂λ(pnow−2, pnow−1) and D̂λ(pnow−1, pnow) will take new values that
can be expressed as follows, (see Figure 7):

D̂λ(pnow−2, pnow−1)
+ =

3

4
D̂λ(pnow−2, pnow−1) +

1

4
D̂λ(pnow−1, pnow),

D̂λ(pnow−1, pnow)+ =
1

4
D̂λ(pnow−2, pnow−1) +

3

4
D̂λ(pnow−1, pnow).

For i ∈ {1, . . . , nip}, define Ai ∈ R
nip×nip by

(Ai)jk =






3/4, if j = k = i, or j = k = i − 1,

1/4, if j = i − 1 and k = i, or if j = i, and k = i − 1,

δjk, otherwise.
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Pi

pnow−2

D̂λ(pnow−2,pnow−1)
2

D̂λ(pnow−1,pnow)
2

p+
now−1

pnow−1

D̂λ(pnow−1,pnow)+D̂λ(pnow−1,pnow)
2

pnow

Figure 7: This figure shows how the pseudo-distance D̂λ between pnow−2 and pnow−1, and between pnow−1

and pnow changes after agent i has optimally placed pnow−1.

Then the Ai are the dynamics matrices for the system

D̂λ(t2) = AiD̂λ(t1),

where t2 > t1 is the time when the interpolation point i is moved by a sensing agent to its new Voronoi
center, assuming that between t1 and t2 no other interpolation point is moved. If at the same instant more
interpolation points are relocated, then the dynamics matrix is the product of all the Ai that correspond
to the relocated interpolation points. We can now relax the assumptions and we can consider slowly time-
varying ∂Q. Let tki be the k-th time that pi is optimally placed by an agent. Before optimally placing pi, the

agent will project pi+1. Because the boundary has changed, the pseudo-distance D̂λ(pi, pi+1, t
k
i ) will differ

from D̂λ(pi, pi+1, t
k−1
i+1 ) by some noise g(tki − tk−1

i+1 ). Therefore the system is evolving according to a dynamical
system of the form:

D̂λ(tki )+ = Ai

(
D̂λ(tki ) + ei+1g(tki − tk−1

i+1 )
)

, (22)

where ei is the column vector with null entries but the i-th component that is equal to 1. Let ∆T =

supt∈R+

L(∂Q(t))
vmin

. Note that ∆T < +∞ since by assumption the length of the boundary ∂Q(t) is uniformly

upperbounded. This means that at most after ∆T any interpolation point is updated at least once. Any time

that an agent updates any interpolation point pi the vector D̂λ evolves according to (22), where tki − tk−1
i+1 is

upperbounded by ∆T .
Because ∆T is finite, there exists a sequence of instants τk, with k ∈ N0, such that across the interval

[τk−1, τk] every interpolation point has been updated at least once by an agent. In other words:

D̂λ(k + 1) = A(k)D̂λ(k) + u(k), k ∈ N0, (23)

where we identify τ0 ≡ 0, and τk ≡ k, and where A(k) = Π
M(k)
j=1 Ajk

, jk ∈ {1, . . . , nip}. The graph associated

with A(k) is connected and A(k) is ergodic. Furthermore, A(k) is doubly stochastic because the product of
double stochastic matrices. The value of the index jk depends on the order in which the interpolation points
are updated. It is easy to see that nip ≤ M(k) ≤ nanip. Consider now the disagreement vector d(k) defined
in (20). Recalling (23), and that A(k) is doubly stochastic, we can write the update law of the disagreement
d(k):

d(k + 1) = A(k)d(k) + δu(k), k ∈ N0, (24)
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where δu(k) = u(k) − 1
T
u(k)

nip
1. Because A(k) is ergodic, the equilibrium point of the unperturbed system is

the origin which means that, if u(k) is equal to 0, asymptotically the system (23) will reach 1
T bDλ(k)

nip
1.

Let V (d(k)) = d(k)T d(k) be a Lyapunov function candidate for the dynamics of d(k). Then:

V (d(k + 1)) − V (d(k)) = −d(k)T R(k)d(k) + δu(k)T δu(k) + 2δu(k)TA(k)d(k),

where −R(k) =
(
A(k)TA(k) − Inip

)
. By Theorem 1 it can be proved that R(k) is positive semidefinite and

the only eigenvalue at the origin is associated with the eigenvector 1 that is orthogonal to d(k).
Let Aq be a generic element of the set of cardinality nip! + (nip + 1)! + · · · + (nipna)! containing all the

possible matrices obtained by multiplying M matrices Ai, with nip ≤ M ≤ nanip and i ∈ {1, . . . , nip}, such

that the graph associated with Aq is connected. Let rj
q = {r ∈ R|det

(
rInip

− (AT
q Aq − Inip

)
)

= 0} \ {0}

and rq = minj |r
j
q|, then ∃ r = minq rq < 0 because we are considering a finite set of matrices. We can then

upperbound V (d(k + 1)) − V (d(k)) as follows:

V (d(k + 1)) − V (d(k)) ≤ −α3(‖d(k)‖) + σ(‖δu‖),

where α3(‖d(k)‖) = 1
2r‖d(k)‖2, σ(‖δu‖) = (2

r + 1)‖δu‖2. By [16] the system described by (24) is input-
to-state stable. Since the system (24) is ISS, we can now relax the assumption that no error effect the

calculation of Ĉnow−1 and still be able to conclude that D̂λ will asymptotically get close to the equilibrium of

the unforced system, i.e., the interpolation points are uniformly distributed according to D̂λ. This is simply
because also this error enters linearly in the system (24).

We can now prove the ISS property for the dynamics of δL.
Let us suppose that the ∂Q(t) is time-invariant and that the sensing agents can actually compute without

error the arc length distance between them and their clockwise and counterclockwise neighbors. The dynamics
for L(t) can be derived as follows. Consider

L̇(Pi(t), Pi+1(t)) = vi+1 − vi, (25)

where

vi+1 = v0 + k (L (Pi+1, Pi+2) − L (Pi, Pi+1)) , (26)

vi = v0 + k (L (Pi, Pi+1) − L (Pi−1, Pi)) . (27)

Substituting now equations (26) and (27) in equation (25), we have:

L̇(Pi(t), Pi+1(t)) = k
(
L (Pi+1, Pi+2) − 2L (Pi, Pi+1) + L (Pi−1, Pi)

)
.

If the saturation on the speeds is not active, we have:

L̇(t) = k





−2 1 0 . . . 1
1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
1 0 . . . 1 −2




L(t) = kALL(t).

If we introduce the saturation on the speeds vi, then the dynamics of L becomes:

L̇(t) = kA(c1, . . . , cna
)L(t),

where A(c1, . . . , cna
) is defined in Section 2, with n = na, α = min{vmax−v0,v0−vmin}

kL(∂Q) . To calculate the

lowerbound of ci, α, suppose that the saturation on the velocity is active for the sensing agent i. This is
equivalent to saying that

vi = v0 + k′
i (L(Pi, Pi+1) − L(Pi−1, Pi)) ,
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where k′
i = kci, ci ≤ 1. We can think of the saturation function as a change in the gain in the control law.

If vi = vmax, then

k′
i =

vmax − v0

(L(Pi, Pi+1) − L(Pi−1, Pi))
≥

vmax − v0

L(∂Q)
=⇒ ci =

k′
i

k
≥

1

k

vmax − v0

L(∂Q)
> 0.

If vi = vmin, then

k′
i =

v0 − vmin

(L(Pi, Pi+1) − L(Pi−1, Pi))
≥

v0 − vmin

L(∂Q)
=⇒ ci =

k′
i

k
≥

1

k

v0 − vmin

L(∂Q)
> 0.

Therefore a lowerbound for the ci is given by the min{vmax − v0, v0 − vmin}
1

kL(∂Q) . It can be proved (see

Lemma 2) that the new matrices A(c1, . . . , cna
), like AL, are negative semidefinite. The only eigenvalue at

the origin is associated with the eigenvector 1.
Let us consider the disagreement δL as described by (21), then

˙δL(t) = A(c1, . . . , cna
)δL(t), (28)

and the candidate Lyapunov function V (δL(t)) = δLT (t)δL(t), then

V̇ (δL(t)) = 2δL(t)A(c1, . . . , cna
)δL(t) ≤ 0,

where the equality holds only if the entries of δL(t) are all zero. Since ci belong to a compact set, the matrices
A(c1, . . . , cna

) belong to a compact set, and since the eigenvalues of a matrix are a continuous function of its
entries (see [17]) then there exists an upperbound −ρ < 0 for the eigenvalues that are different from zero and
as a consequence:

V̇ (δL(t)) ≤ −ρ‖δL(t)‖2.

We can then conclude that the system (28) is exponentially stable.
Let us now analyze how the pursuit objective can still be achieved when the boundary is slowly-varying

and when the instead of L(Pi, Pi+1) the agents use only the approximation L̂(Pi, Pi+1). Let ud(t) be the
vector that expresses the change in the arc length distance between any two consecutive agents due to the

deformation of ∂Q(t), and let uav
d (t) = 1

T
ud(t)
na

1, then

ud(t) = δud(t) + uav
d (t).

Let Lav(t) = 1
T
L(t)
na

1, then:

L(t) = Lav(t) + δL(t) = Lav(0) + uav
d (t) + δL(t),

and taking the derivative respect to time of both sides we have:

L̇(t) = u̇av
d (t) + ˙δL(t).

The quantity u̇av
d (t) is bounded because the arc length is a composition of smooth function in t and the

parametrization of the boundary ∂Q. In the case of slowly time-varying boundary the variation in time
of the vector L(t) is due, not only to the fact that the agents speed up and slow down as imposed by the
algorithm, but also to the deformation of ∂Q:

L̇(t) = A(t)L̂(t) + u̇d(t) = A(t)(L(t) + ui(t)) + u̇d(t),

where A(t) = A(c1, . . . , cna
), while ui(t) ∈ R

na×1 is the noise due to the fact that the agents do not know
exactly the arc length distance between them and their neighbors, L, but just an estimate through the
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interpolation points, L̂. Using the change of variables in equation (21), and recalling that A(t)1 = 0, for all
t, we have:

u̇av
d (t) + ˙δL(t) = A(t)δL(t) + A(t)δui(t) + u̇d(t),

where δui = ui −
1

T
ui(t)
na

1. It follows that

˙δL(t) = A(t)δL(t) + A(t)δui(t) + ˙δud(t), (29)

with ˙δud(t) = u̇d(t) − u̇av
d (t). The system described by equation (29) is input-to-state stable (with input

A(t)δui(t) + ˙δu(t)d) because (i) the unforced system is exponentially stable, and (ii) the right-hand-side

of (29) is differentiable and uniformly globally Lipschitz in δL and A(t)δui(t) + ˙δu(t)d, (see [18]).

The ISS property guarantees that if ui, the error between L and its estimate L̂, is small and if ud is
smaller, then the agents will get close to the equilibrium point of (28), which corresponds to have the agents
uniformly distributed according to the arc length. The larger nip is and the slower the deformation of ∂Q is,
then the smaller ui and ud are, and the closer to 0 the disagreement δL will get asymptotically.

4.3 Simulations

In this section we present results of two different simulations obtained with the implementation of the Esti-

mate Update and Pursuit Algorithm. In the first simulation the boundary ∂Q is time invariant, while
in the second is time varying.

4.3.1 Time-invariant boundary

In this simulation we use na = 3 sensing agents to have an approximation of the non-convex boundary ∂Q
described by (18). The outcome is shown in Figure 8. In order to calculate their speeds, the sensing agents
use v0 = 1, and k = 0.05. The saturation function for the speed has lower limit vmin = 0.5 and upper
limit vmax = 2. The number of interpolation points is nip = 30, while λ = 10

11 . The simulation time is
50 seconds and the sampling time 0.01 seconds. The plots in Figure 8 corresponds to the positions of the
interpolation points and the sensing agents at four different instants: t = 0, t = 20, t = 40, and t = 50
seconds. The interpolation points pnowi for i ∈ {1, . . . , na} coincide with the positions of the sensing agents.
The other interpolation points are randomly distributed on the boundary. In the last frame one can also see
the approximating polygon and how close it is to the actual boundary.

Since the pseudo-distance Dλ and the arc length L can be calculated after the simulation is completed,

we use Dλ and L instead of their estimate D̂λ and L̂ to show the algorithm performance. Figure 9 does
indeed show the convergence of the algorithm. In the first plot we can see that the consensus on the
pseudo-distance Dλ(pi, pi+1), between any two consecutive interpolation points, is reached. The quantity
maxi∈{1,...,nip} Dλ(pi, pi+1) − mini∈{1,...,nip} Dλ(pi, pi+1) does not vanish because of numerical errors in the

estimate D̂λ. The second plot shows how the agents get uniformly spaced along the boundary. The steady
state values of the arc length distances oscillates around 8.3 which is the target value. The noise is again due
to the fact that the agents only estimate the arc length using the positions of the interpolation points.

4.3.2 Slowly time-varying boundary

In this simulation we used na = 3 sensing agents to have an approximation of the non-convex boundary
∂Q(t) described by:

γ(θ, t) =

(
2

(
1 −

t

tf

)
+
(
2 + cos(10πθ) + 0.5 sin(4πθ)

) t

tf

)[
cos(2πθ)
sin(2πθ)

]
,

with θ ∈ [0, 1), tf = 200 seconds as shown in Figure 10. The values of v0, k, vmin, vmax and λ are respectively:
1, 0.05, 0.5, 2, and 10

11 . The simulation time is 200 seconds, the sampling time 0.01 seconds. The plots in
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Figure 8: This figure shows four different instants of 50 seconds simulation obtained by the implementation of the
Estimate Update and Pursuit Algorithm with na = 3, nip = 30, v0 = 1, k = 0.05, λ = 10

11
. ∂Q is time invariant.

The sensing agents position is represented by the triangles and are initialized to be on the boundary ∂Q. In the last
frame also the approximating polygon is shown.

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

time (sec)

max Dλ −min Dλ

0 5 10 15 20 25 30 35 40 45 50
4

5

6

7

8

9

10

11

12

time (sec)

Arc length distances

Figure 9: Estimate Update and Pursuit Algorithm This plots refers to the case of ∂Q being time-invariant. In
the first plot from right it is shown the error maxi∈{1,...,nip} Dλ(pi, pi+1)−mini∈{1,...,nip} Dλ(pi, pi+1) vs time. In the
second plot we show the arc length distances between the three sensing agents.
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Figure 10: This figure shows four different instants of the 200 seconds simulation obtained by implementing the
Estimate Update and Pursuit Algorithm with na = 3, nip = 30, v0 = 1, k = 0.05, λ = 10

11
. The boundary ∂Q

is slowly time-varying in this case. The sensing agents positions are represented by triangles and initialized to be on
the boundary ∂Q. The last frame also shows the approximating polygon.

Figure 10 correspond to the positions of the interpolation points and the sensing agents at four different
instants, t = 0, t = 50, t = 100, and t = 200 seconds respectively. The algorithm is initialized with the agents
on the boundary. The interpolation points pnowi coincide with the positions of the sensing agents. The other
interpolation points are randomly distributed. In the last frame we can also see the approximating polygon
and how close to the actual boundary is. From the frames in Figure 10 it is clear that the sensing agents can
adapt as ∂Q changes.

The pseudo-distance Dλ is well defined only if the interpolation points belong to the boundary ∂Q.
Since the boundary changes with time, the interpolation points are only for some time on the boundary
after a sensing agents has projected them. So, we consider as pseudo-distance between any two consecutive
interpolation points in a certain time τ the pseudo-distance between their radial projection onto ∂Q(τ). The
disagreement in the placement of the interpolation points, where Dλ is redefined as just explained, is shown
in the first plot of Figure 11.

The arc length between any two consecutive sensing agents is shown in the second plot of Figure 11. The
three distances increase with time because L(∂Q), the total length of the boundary, increases with time.
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Figure 11: Estimate Update and Pursuit Algorithm. This figure refers to the case of ∂Q being slowly time-
varying. In the first plot from the right we shown the error maxi∈{1,...,nip} Dλ(pi, pi+1)−mini∈{1,...,nip} Dλ(pi, pi+1)
vs time. The second plot shows the arc length distances between the three sensing agents.

5 Conclusions

In this paper we have addressed the problem of boundary estimation and tracking by means of robotic sensors.
We have presented algorithms to position the agents or interpolation points along the boundary in such a way
as to obtain an approximating polygon with some optimality features. It is proven that the best approximating
polygon for convex bodies, according to the symmetric difference δS , is the polygon whose vertices are
uniformly distributed according to the metric

∫
ρ2/3(θ)dθ. We used a new metric Dλ =

∫
(λκ1/3d`+(1−λ)d`)

that differs from the other one in two aspects. Motivated by the fact that
∫

∂Q
κ1/3d` =

∫ 2π

0
ρ2/3(θ)dθ for

convex bodies, we substitute ρ with κ because ρ is not well defined for a non-convex bodies. We further
modified the metric introducing the arc length so that for any two non-coincident points the pseudo-distance
Dλ is always different from zero. In our first ideal scenario the agents know the boundary. The corresponding
algorithm leads the robots to positions that are uniformly spaced according to the pseudo-distance Dλ. Using
tools from network consensus analysis, the algorithm is proven to converge for large communication radiuses;
simulations illustrate that the algorithm converges also when the communication range is limited.

In the second and more realistic scenario, the mobile agents are equipped with sensors that provide local
information on the tangent and curvature of the boundary. The second algorithm allows the robots to place
a set of interpolation points uniformly spaced according to the estimate of the pseudo-distance Dλ. The
position of the interpolation points is stored in a data fusion center and is available on-demand to the agents.
The vertices of the approximating polygon are the interpolation point positions. The algorithm is proven to
converge even if the boundary is slowly-moving. As in the first scenario, tools from consensus analysis allow
us to prove the correctness of the second algorithm.
new paragraph

?The existence of a central data fusion center is not a critical ingredient in the design of the algorithm.
Indeed, one can envision the following equivalent scenario: the agents communicate the updated interpolation
points to their clockwise neighboor, instead of exchanging them with the data fusion center. In such a
distributed setting, a stationary user could reconstruct the approximating polygon by communicating to all
the agents as they pass by a fixed spatial location. Future research will explore this idea more in detail.
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Name: Estimate Update and Pursuit Algorithm

Goal: Uniformly distribute the interpolation points according to the pseudo-distance

D̂λ, and the sensing agents according to the arc length L̂.
Data: Location of the interpolation points, unitary tangent vector at ∂Q at those points,

last value of D̂λ between any two consecutive interpolation points, local tangent
and local curvature of the boundary ∂Q.

Requires: At t0 = 0 pi lie on ∂Q and D̂λ between any two interpolation points is known.

Assume data is as stated in (19). At every sensing instant, the agent at position Pi(t) = P (t) performs:

1: if D̂λ(oL+1, P (t)) > 2D̂−
λ (pnow−1, pnow), then

2: update the set of observations nextbuffer+ := nextbuffer ∪ {P (t)},
3: else

4: update the set of observations bufferarc+ := bufferarc ∪ {P (t)}.
5: end if

6: estimate γ̂′(P (t)), κ̂(P (t)), and D̂λ(oL+M+T , P (t)).
7: if nextbuffer 6= ∅ and pnowi 6= pnowi+1−2 then

8: update the interpolation point pnow by projecting it onto ∂Q:

p+
now := oj̄ , oj̄ = argminoj∈bufferarc ‖(oj − pnow) · t−now‖,

9: update the set bufferarc and generate the set nowarc by:

bufferarc
+ := bufferarc \ {oL+1, . . . , oj̄},

nowarc
+ := {oL+1, . . . , oj̄},

10: calculate Ĉnow−1 := ok̄ and update pnow−1 by p+
now−1 := ok̄,

11: communicate with data center: transmit pnow−1, pnow, γ̂′(pnow−1), D̂λ(pnow−2, pnow−1),

D̂λ(pnow−1, pnow) and receive pnow+1, γ̂′(pnow+1), D̂λ(pnow, pnow+1),
12: update the counter now and the set lastarc by

now
+ := now + 1, lastarc

+ := {ok̄, . . . , oj̄},

13: update the sets bufferarc and nextbuffer as follows:

14: if ∃oq ∈ bufferarc ∪ nextbuffer s.t.D̂−
λ (oj̄+1, oq) ≥ 2D̂λ(pnow+−1, pnow+), then

15: bufferarc+ := {oj̄+1, . . . , oq}, nextbuffer+ := {oq+1, . . . , oL+M+T },
16: else

17: bufferarc+ := bufferarc ∪ nextbuffer, nextbuffer+ := ∅.
18: end if

19: end if

20: communicate with Pi+1 and Pi−1: receive nowi+1, nowi−1, transmit nowi. Communicate with the
data center: receive the positions of the interpolation points with id between nowi−1 and nowi+1.

21: calculate vi(t): vi(t) = sat(v0 + k(L̂(Pi, Pi+1) − L̂(Pi−1, Pi))).
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